Морозоустойчивость растений: как не дать замерзнуть?

Нам уже не привыкать к аномальным изменениям погодных условий. В этом году конец лета выдался настолько засушливым, что даже метеорологи разводят руками: «За 150 лет наблюдений аналогов не было». А для зимы у нас уже обычным стали морозы без снегового покрова и резкие потепления. Потому вопрос повышения морозоустойчивости растений в наибольшей мере волнует производителей озимых.
Морозоустойчивость — способность растений переносить температуру ниже 0°С, низкие отрицательные температуры. Эта способность определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, влияющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.
Постепенное снижение температуры со скоростью 0,5-1°С/ч приводит к образованию кристаллов льда прежде всего в межклеточниках и первоначально не вызывает гибели клеток. Однако последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки погибают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.
Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится концентрированным, изменяется рН среды. Выкристаллизовавшийся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма подвергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.
Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивании такие растения могут сохранить жизнеспособность. Так, в листьях капусты при температуре -5…-6°С образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, которая поглощается клетками, и листья возвращаются в нормальное состояние.
Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели клеток растений при низких отрицательных температурах и льдообразовании являются чрезмерное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоятельствами. Последствия воздействия низких отрицательных температур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выносить глубокие низкие температуры (до -196°С). Низкое содержание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой критический предел обезвоживания и сжатия, превышение которого, а не только снижение температуры приводит к их гибели.
Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим поверхностные структуры цитоплазмы, кристаллами льда, нарушающими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.
Действие льда, особенно при длительном влиянии низких температур, сходно с обезвоживанием клеток при засухе. Признаками повреждения клеток морозом являются потеря ими тургора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К+ и сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транспорта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буреют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без образования льда) растения переносят без вреда; при тех же температурах, но с образованием льда в тканях растения гибнут.
Приспособительные механизмы растений
У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изменения. Морозоустойчивые растения обладают приспособлениями, уменьшающими обезвоживание клеток. При понижении температуры у таких растений отмечаются повышение содержания сахаров и других веществ, защищающих ткани (криопротекторы), это прежде всего гидрофильные белки, моно- и олигосахариды; снижение оводненности клеток; увеличение количества полярных липидов и снижение насыщенности их жирнокислотных остатков; увеличение количества защитных белков.
На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образующиеся в клетках. В зимующих растениях в цитоплазме накапливаются сахара, а содержание крахмала снижается. Влияние сахаров на повышение морозоустойчивости растений многосторонне. Накопление сахаров предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образующегося льда.
Сахара защищают белковые соединения от коагуляции при вымораживании; они образуют гидрофильные связи с белками цитоплазмы, предохраняя их от возможной денатурации, повышают осмотическое давление и снижают температуру замерзания цитозоля. В результате накопления сахаров содержание прочносвязанной воды увеличивается, а свободной уменьшается. Особое значение имеет защитное влияние сахаров на белки, сосредоточенные в поверхностных мембранах клетки. Сахара увеличивают водоудерживающую способность коллоидов протоплазмы клеток; связанная с коллоидами вода в виде гидратных оболочек биополимеров при низких температурах не замерзает и не транспортируется, оставаясь в клетке.
Криопротекторами являются также молекулы гемицеллюлоз (ксиланы, арабиноксиланы), выделяемые цитоплазмой в клеточную стенку, обволакивающие растущие кристаллы льда, что предотвращает образование крупных кристаллов, повреждающих клетку. Так клетки защищаются как от внутриклеточного льда, так и от чрезмерного обезвоживания. Значительное количество защитных белков и модификации молекул липидов увеличивают структурированность клеток. У большинства растений возрастает синтез водорастворимых белков.
Белковые вещества, частично гидролизуясь, увеличивают содержание свободных аминокислот. В тканях морозоустойчивых растений в конце лета и осенью накапливаются в достаточном количестве запасные вещества (прежде всего сахара), которые используются весной при возобновлении роста, обеспечивая потребности растений в строительном материале и энергии.
Пути повышения морозоустойчивости растений
Основа решения этой задачи — селекция морозоустойчивых сортов растений, хорошо адаптирующихся к климатическим условиям данного региона. Процесс закаливания представляет собой временную адаптацию цитоплазмы, определяющую степень устойчивости к последующим повреждениям низкими температурами. Морозоустойчивость же формируется в соответствии с генотипом в процессе онтогенеза под влиянием определенных условий внешней среды и связана с наступлением периода покоя, его глубиной и длительностью.
Агротехника конкретного вида растений (срок и способ посева и др.) должна максимально способствовать формированию в процессе закалки реализации возможной генетически детерминированной морозоустойчивости сорта. В северных и центральных районах с неустойчивой весной и частым возвращением весенних заморозков более устойчивы и урожайны сорта озимых хлебов и плодовых многолетних культур с более глубоким зимним покоем, с поздним сроком возобновления весенней вегетации (ВВВ). Наоборот, в районах с устойчивым нарастанием положительных температур весной преимущество имеют рановегетирующие виды и сорта растений.
Морозоустойчивость сортов озимой пшеницы определяется не только количеством сахаров, накопленных с осени, но и их экономным расходованием в течение зимы. У растений зимостойких сортов озимой пшеницы в зимний период с понижением температуры содержание моносахаридов (глюкоза, фруктоза) увеличивается за счет расщепления сахарозы на глюкозу и фруктозу, что снижает точку замерзания клеточного сока. Узел кущения злаков, корневая шейка бобовых — своеобразная кладовая энергетических ресурсов растения в зимний период и орган побегообразования весной.
Морозоустойчивость растений озимой пшеницы положительно коррелирует с содержанием сахаров в узлах кущения. В хороших посевах озимой пшеницы в листьях в декабре содержание растворимых углеводов достигает 18-24 % (на сухое вещество), а в узлах кущения — 39-42 %. Растения, закладывающие узлы кущения глубоко (3-4 см), как правило, более морозоустойчивы, чем те, у которых узел кущения находится близко к поверхности (1-2 см). Глубина залегания узла кущения и мощность его развития зависят от качества семян, способа посева, обработки почвы.
Удобрения и морозоустойчивость растений
На морозоустойчивость существенное влияние оказывают условия почвенного питания, особенно в осенний период. Устойчивость растений к морозу возрастает на постоянно известкуемых почвах при внесении под посев озимых калийно-фосфорных удобрений, тогда как избыточные азотные удобрения, способствуя процессам роста, делают растения озимых более чувствительными к морозам.
Одной из стратегий при выращивании озимых культур должен быть правильный менеджмент азота: перед и на протяжении морозного периода нужно избегать внесения азотных удобрений.
Положительное действие на морозоустойчивость растений оказывают калийные удобрения. Они влияют на метаболизм углеводов, способствуя повышению сахаров в растении. Также калий оказывает влияние на водный обмен в растении и прохождение процесса фотосинтеза.
Фосфор влияет на деление клеток, следовательно, помогает растению восстановиться после стресса.
На морозоустойчивость, как и на холодостойкость растений, положительное влияние оказывают микроэлементы (кобальт, цинк, молибден, медь, ванадий и др.). Например, цинк повышает содержание связанной воды, усиливает накопление сахаров, молибден способствует увеличению содержания общего и белкового азота. Микроэлементные препараты могут быть нанесены на семена перед посевом.
Образование льда в почках и листьях растений в большой мере зависит от наличия маленьких частичек, которые действуют как ядра кристаллизации. Опрыскивание растений медью снижает количество бактерий, которые могут выступать ядрами кристаллизации, таким образом, способствуя повышению морозостойкости растений.
Также для повышения морозоустойчивости озимых используют антитранспиранты – вещества, обволакивающие листья полупроницаемой мембраной и снижающие уровень транспирации. Их наносят на листья за 24 часа до ожидаемого изменения погодных условий, и потом каждые 2-4 недели проводят повторные обработки в зависимости от условий.
Экстракты водорослей также рассматривают как препараты, повышающие морозоустойчивость растений. Их периодическое внесение помогает растению в какой-то мере предотвратить негативные последствия низких температур. Экстракты водорослей содержат большое количество регуляторов роста растений, два из которых (цитокинины и бетаины) увеличивают тургор клеточной стенки. Также в их состав входят сахара (маннитол) и калий, оба из которых уменьшают точку замерзания протоплазмы.
Микробные препараты также оказываются эффективными в повышении морозоустойчивости растений. Микробно-растительное сообщество создается в результате предпосевной обработки семян озимых культур и ранней обработки их всходов. В состав препаратов входят штаммы активных фосформобилизирующих, азотфиксирующих микроорганизмов и других микроорганизмов, синтезирующих растительные гормоны, антибиотики, витамины. Также в состав препаратов часто входят микроорганизмы бактерицидного и фунгицидного действия, помогающие растениям выйти из зимы с наименьшими потерями.
Гуминовые препараты могут стать средством в повышении морозоустойчивости растений. Они способствуют накоплению сахаров в узле кущения, повышают концентрацию клеточного сока. Особенно эффективны гуминовые препараты с микроэлементами.
При подготовке статьи использованы материалы сайта http://www.ecosystema.ru

 Инфоиндустрия

эксперт рынка агрохимии Логинова Ирина 

Читайте нас у Telegram

Популярні Новини

Підпишись на Infoindustry